Công thức diện tích mặt cầu ngoại tiếp

Công thức diện tích mặt cầu ngoại tiếp

  • Admin
  • 06-11-2020
  • 1160 view
Cách tính và công thức diện tích mặt cầu ngoại tiếp là kiến thức nằm trong chương trình Toán học lớp 12, gặp nhiều bài tập cũng như bài thi liên quan tới dạng tính mặt cầu ngoại tiếp này. Các em muốn bổ sung kiến thức này thì có thể tham khảo bài viết dưới đây.

Mặt cầu là tập hợp các điểm M trong không gian cách điểm O cố định một khoảng R gọi là tâm cầu O, bán kính R, kí hiệu: S(O; R) hay {M/OM = R}, vậy công thức tính diện tích mặt cầu ngoại tiếp là gì, mời các bạn cùng đón đọc bài hướng dẫn chi tiết của chúng tôi.

Công thức diện tích mặt cầu ngoại tiếp 0

Công thức diện tích mặt cầu ngoại tiếp

 

Mục Lục bài viết:
1. Công thức tính diện tích mặt cầu ngoại tiếp.
2. Cách tìm tâm, bán kính mặt cầu hình cơ bản.
3. Công thức tính bán kính mặt cầu ngoại tiếp.
4. Bài tập.

 

Công thức diện tích mặt cầu ngoại tiếp


Công thức tính diện tích mặt cầu ngoại tiếp

SC = 4.π.R2

Với: SC là kí hiệu diện tích mặt cầu
R là bán kính mặt cầu ngoại tiếp

- Trục đáy: Là đường thẳng đi qua tâm đường tròn ngoại tiếp của đa giác đáy và vuông góc với mặt phẳng chứa đa giác đáy.
- Trung trực của đoạn thẳng: Là đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng đó.
- Mặt trung trực của đoạn thẳng: Mặt phẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng đó.


Cách tìm tâm và bán kính mặt cầu của các hình cơ bản

- Tâm và bán kính mặt cầu là hai đại lượng quan trọng để tính diện tích của mặt cầu ngoại tiếp, chính vì vậy xác định tâm và bán kính là thao tác quan trọng để các em có thể tìm được diện tích. Cùng theo dõi cách tìm tâm và cách tính bán kính của mặt cầu ngoại tiếp một số hình.

1. Hình lăng trụ đứng

Hình lăng trụ đứng A1A2A3A4.A'1A'2A'3A'4 có hai đáy nội tiếp đường tròn O và O'.

- Tâm mặt cầu: I và I' (đều là trung điểm của OO')

- Bán kính mặt cầu ngoại tiếp: R = IA1 = IA2 = ....

- Biết tâm, bán kính, áp dụng công thức tính diện tích mặt cầu ngoại tiếp, thay số và tính toán.

2. Hình chóp

a) Hình chóp đều

* Xác định tâm mặt cầu: Hình chóp đều SABC có:

- O là tâm của đáy => SO là trục đáy

- Trên mặt phẳng (SAO), vẽ d là đường trung trực của SA cắt SA tại giao điểm M, cắt SO tại giao điểm I

=> Tâm mặt cầu ngoại tiếp hình chóp chính là I.

* Tính bán kính mặt cầu ngoại tiếp:

Xét hai tam giác đồng dạng với nhau là SMI và SOA, ta có:

=> R = SI = = SA2 : 2.SO = IB = IB = IC

* Tìm diện tích mặt cầu ngoại tiếp:

=> Sau khi tính được bán kính mặt cầu, ta áp dụng công thức: SC = 4.π.R2

b) Hình chóp có cạnh bên vuông góc với mặt phẳng đáy

* Tìm tâm mặt cầu: Hình chóp SABC có SA vuông góc với mặt đáy (ABC) trong đó mặt đáy ABC nội tiếp đường tròn tâm O
- Từ tâm O ngoại tiếp của đường tròn đáy, vẽ d vuông góc với (ABC) tại O.
- Trong mặt phẳng được tạo bởi đường thẳng d với SA, vẽ đường trung trực d' của SA, giao với SA tại M, giao với d tại I.
* Tính bán kính mặt cầu ngoại tiếp:

Từ các dữ kiện đã biết, ta có hình chữ nhật MIOB

- Xét tam giác vuông MAI tại M:

R = AI = √(MI2 + MA2) = √[AO2 + (SA/2)2]

3. Hình hộp chữ nhật, hình lập phương

* Xác định tâm của mặt cầu:
- Tâm của mặt cầu chính là trung điểm của đoạn thẳng AC' (tâm đối xứng của hình hộp chữ nhật/ hình lập phương).
* Tính bán kính mặt cầu ngoại tiếp: R =
- Bán kính mặt cầu = 1/2 độ dài đường chéo của hình hộp chữ nhật / hình lập phương.
* Áp dụng công thức tính SC để tính diện tích.


Công thức liên quan tới diện tích mặt cầu ngoại tiếp hình chóp

Để tính được diện ích mặt cầu ngoại tiếp, các bạn cần tính được bán kính ngoại tiếp. Các bạn cùng xem công thức tính bán kính mặt cầu ngoại tiếp để áp dụng vào trong bài cho đúng. 


Bài tập tính diện tích mặt cầu ngoại tiếp

Bài tập 1: Cho hình chóp tam giác S.ABC, SAB là tam giác đều, đáy ABC là tam giác đều có cạnh bằng a, (SAB) vuông (ABC). Tính diện tích mặt cầu ngoại tiếp S.ABC.

Bài giải:

Công thức diện tích mặt cầu ngoại tiếp 1

Bài tập 2: Cho hình chóp S.ABCD, đáy ABCD là hình vuông có cạnh bằng a, SA = a√3, SA ⊥ (ABCD). Tính diện tích mặt cầu ngoại tiếp hình chóp.

Công thức diện tích mặt cầu ngoại tiếp 2

Công thức tính diện tích mặt cầu ngoại tiếp tương đối đơn giản, dễ nhớ, dễ thuộc, tuy nhiên trong từng dạng bài tập các em cần áp dụng một cách linh hoạt để tìm ra đáp án chính xác nhất cho đề bài. Bên cạnh đó các em cũng cần hiểu và ghi nhớ cách tính diện tích hình tròn để dễ dàng áp dụng những loại hình tương tự trong hình học không gian nhé.


Ngoài ra các em có thể tham khảo thêm các dạng bài về mặt cầu ngoại tiếp như bài toán công thức tính bán kính mặt cầu ngoại tiếp tứ diện cũng là một bài toán mà các em rất hay gặp đó nhé.

Trên đây là tất cả những gì có trong Công thức diện tích mặt cầu ngoại tiếp mà chúng tôi muốn chia sẻ với các bạn. Bạn ấn tượng với điều gì nhất trong số đó? Liệu chúng tôi có bỏ sót điều gì nữa không? Nếu bạn có ý kiến về Công thức diện tích mặt cầu ngoại tiếp, hãy cho chúng tôi biết ở phần bình luận bên dưới. Hoặc nếu thấy bài viết này hay và bổ ích, xin đừng quên chia sẻ nó đến những người khác.

Facebook

Post Comment

(*) Lưu ý:
+ 1: Bạn phải sử dụng email thật, một email xác thực sẽ được gửi đi sau khi bạn gửi comment để xác nhận bạn không phải là người máy. Nếu bạn không xác nhận email, comment của bạn CHẮC CHẮN sẽ không được duyệt.
+ 2: Bạn chỉ cần xác thực email cho lần đầu tiên, những lần sau sẽ không cần xác thực
+ 3: Chúng tôi sẽ không hiển thị công cộng email của bạn